Résumé :
Des données acoustiques sont collectées en continu lors de campagnes écosystémiques pour déceler les bancs de poissons d’espèces commerciales et en quantifier l’abondance. Ces données multifréquences contiennent également des informations sur des agrégations de cibles plus petites qui se présentent sous forme de couches diffusantes. Il existe une grande diversité de couches diffusantes dont l’aspect sur les échogrammes, la réponse fréquentielle et la composition spécifique varient. L’objectif de cette thèse est de définir les types de couches diffusantes rencontrées lors de la campagne PELGAS, de décrire leurs distributions spatiales à méso-échelle, de les comparer à celles des autres compartiments de l’écosystème, et d’examiner la composition taxonomique des couches diffusantes résonantes à fine échelle. Une méthode de classification non supervisée des échos appliquée aux données PELGAS permet de définir des « paysages acoustiques » structurés spatialement. Ces paysages acoustiques sont dominés par des réflecteurs porteurs de bulles de gaz risonnant aux fréquences halieutiques et ne sont corrélés à aucun compartiment de l’écosystème pélagique issus de PELGAS2013. La composition biologique de couches diffusantes denses est étudiée à fine échelle en combinant par des approches directe et inverse les résultats de leur échantillonnage acoustique et biologique. Les résultats montrent que la réponse acoustique des couches diffusantes denses est dominée par celle de bulles de gaz incluses dans des larves de poissons (e.g. Sardina pilchardus), et dans des organismes micronektoniques, qui sont peu ou pas échantillonnés avec les outils de collecte biologique.

Mots clés : [acoustique, multifréquences, couches diffusantes, micronekton, golfe de Gascogne, PELGAS]

Bay of Biscay sound scattering layers: acoustic characterization, taxonomic composition and spatial distribution

Abstract:
Fisheries acoustic data are continuously collected during ecosystemic surveys to detect fish schools of commercial species and to quantify the fish abundance. These multifrequency data also contain information about smaller target aggregations producing ubiquitous Sound Scattering Layers (SSLs) on the echograms, with quite diverse shape, frequency responses and taxonomic compositions. In this work, we focus on the SSLs observed in spring in the Bay of Biscay during the PELGAS surveys. The objectives are: i) to classify SSLs, ii) to describe their spatial meso-scale distribution, iii) to investigate their relationships with other ecosystem components, and iv) to investigate the taxonomic composition of resonant SSLs at fine scale. A Multiple Correspondence Analysis based method for non supervised echoes classification is applied to PELGAS multifrequency data to define constrained and spatially structured “acoustic landscapes”. Acoustic landscapes are dominated by frequency responses of gas-bearing organisms, whose gas inclusion might resonate at the fisheries acoustic frequencies. No correlation is found between the spatial distributions of acoustic landscapes and those of other pelagic ecosystem components indices. The biological composition of resonant SSLs is investigated by jointly applying forward and inverse approached to fine scale acoustic and biological collected in the same dense SSL. Results suggest that the dense SSLs may be comprised of fish larvae (e.g. Sardina pilchardus) and larger micronektonic gas bearing organisms that are so far very poorly sampled by non-acoustic devices.

Keywords: [acoustic, multifrequency, sound scattering layers, micronekton, Bay of Biscay, PELGAS]