Ifremer reveals the oceans.

Ifremer’s strategic plan for 2020.
Summary report
IFREMER, A MAJOR PLAYER FOR MARINE RESEARCH IN CHANGING GLOBAL, EUROPEAN AND NATIONAL ENVIRONMENTS

FOREWORD

When Ifremer, the French research institute for exploitation of the sea, drew up its strategic plan in 2008 entitled “Contribution to a national marine science research strategy for 2020”, it did not anticipate that it would become a national strategy for research and innovation, further complemented by a strand concerning overseas France.

Since then, numerous events, in which Ifremer has often played a major role, have justified an updating of its strategic plan:

• the launch and adoption of the “Healthy and productive seas and oceans” joint programming initiative (JPI Oceans);
• creation of a joint service unit for the coordinated management of the French oceanographic fleet, with significant results as of 2011;
• alliances created between research institutions and universities which Ifremer takes part in, particularly that of the AllEnvi national alliance for environmental research, whose roadmap is intended to prefigure what France hopes to sponsor in the European framework, or that of the Ancre national alliance for energy research, which has contributed to determining the R&D studies to be conducted to ensure France’s energy transition and give the country an industrial value chain;
• the autonomy of universities and the Investments for the future programme, both bringing new dynamics in terms of scientific partnerships;
• new stakeholders and players arriving on the scene, for instance, following the reform for devolution of State services for coasts and sea, as well as the Agency for marine protected areas.

Therefore, it was deemed essential for Ifremer to re-examine its strengths and assets in order to better prepare its contract with its supervisory line ministries. There is a triple objective for the Institute here.

• To remain, thanks to its teams’ talents, the reference-setting institution it has become in the European research area and maintain the position it holds in marine sciences worldwide.
• To prepare proposals for public authorities so that the 2014-2017 contract will enable it to keep its integrated nature and maintain the continuity between research, expert assessment and monitoring.
• To provide its teams, in the context of a tight budget, with the perspective, outlook and legibility they need to work yet more efficiently and effectively.
AN AMBITION ADAPTED TO NEW OPPORTUNITIES IN EUROPE

On the European scale, Ifremer is reassessing its ambition to pursue studies on various themes developed since the 2008 strategic plan, with the launch of JPI Oceans, in which the Institute is strongly involved, the reform of the Common Fisheries Policy (CFP) underway, in particular with the creation of the European maritime and fisheries fund (EMFF), and the preparation of the Horizon 2020 programme.

The situation of the institutes which are its traditional partners in Europe is also clearly evolving with respect to their macroeconomic and budgetary contexts. The increased importance of marine sciences and technologies in Germany, particularly benefiting the IFM-Goosmar institute, can be noted.

In this context, Ifremer’s ambition is to help give the scientific community the means it needs for research and expert assessment missions, which implies renewal and upgrading of the national scientific fleet, 60% of whose potential is supported by the Institute alone.

COMMON ISSUES OF INTERNATIONAL SCOPE

Seeing the prospects for new resources, growth and jobs which oceans and seas can offer, the marine geosciences and knowledge about deep-sea environments are increasingly sought and requested. Whereas States are focusing on a long-term “blue growth” strategy aiming to support the entire marine and maritime sector, the international scientific community is emphasising the threat of irreversible damage which mankind is causing to the oceans. Therefore, marine research must propose solutions to protect the environment and for rational utilisation of resources and energy.

In June 2012, at the United Nations Rio+20 Conference on sustainable development, the international community mobilised to promote the management and preservation of the oceans. On 12th August 2012, during the Yeosu International Conference in the Republic of Korea, the United Nations Oceans Compact Initiative was launched, with the aim of improving the UN system’s coordination and supplying a framework which will facilitate the rapid achievement of the goal set, i.e.: “Healthy Oceans for Prosperity”.

THE DRIVE FOR MULTIDISCIPLINARY INTEGRATION

As a key player in the field, Ifremer’s strategic orientations should help provide vital answers for knowledge of seas and oceans with respect to issues which are shared worldwide. These priorities represent a move toward greater multidisciplinary integration around societal challenges: global change and its consequences on the environment, knowledge and protection of biodiversity, the integrated ecosystem-based approach and sustainable procurement of non-energy and non-agricultural raw materials.

Also in 2012, the first report was published on the implementation of the Integrated Maritime Policy (IMP) which highlights Europe’s will to better integrate the maritime economy in the Europe 2020 strategy for growth and employment. This strategy was defined in order to improve world governance of the seas and oceans. It provides the best safeguard to protect European economic, ecological and social interests in the maritime realm and should enable the European Union to exert greater influence in international discussions.

STRENGTHENING EUROPEAN COOPERATION

In its funding programmes for research and innovation called “Horizon 2020” (2014-2020), the European Union reaffirms its orientation towards practical implementation of the concepts of sustainable development and the ecosystem-based approach (fisheries, use of resources and coastal areas, new energy sources, pollution and food safety) already highlighted in FP7 R&D.

This programme will focus resources on three priorities: scientific excellence, industrial leadership and societal challenges listed in the Europe 2020 strategy. This will be accompanied by innovative thinking on how to organise research whilst adopting an ambitious approach to optimising how public funding is used for research and development. Ten joint programming initiatives aiming for greater European cooperation in public research programmes have been approved to date by the EU, including JPI Oceans, of which Ifremer is a promoter.
IN-DEPTH RESTRUCTURING OF RESEARCH

On both national and European levels, the research scene is undergoing major changes. Funding agencies play an increased role in the frame of European projects of excellence and research networks (ERA-Nets, etc.). In the field of monitoring and surveillance, new framework directives for coastal development, environmental and consumer protection will culminate on the rectifies for coastal development, environmental search networks (ERA-Nets, etc.). In the field of frame of European projects of excellence and re-Funding agencies play an increased role in the search scene is undergoing major changes. On both national and European levels, the re-

IFREMER, A LEADING PLAYER IN MARINE SCIENCES IN EUROPE

Thus, the Europeanisation of marine research has grown with the structuring of research and the developing of finalised programmes, the greater role of coordination and co-programmation bodies (Marine Board, Eurogoos, ICES, etc.), better coordination in the use of infrastructures and facilities, the stronger European and international regulatory context for monitoring and surveillance and so on. As a key marine sciences organisation in Europe, Ifremer is continuing to be a driving force in implementing European programmes, taking part in JPI Oceans; in the Food4Future Knowledge and Innovation Community (KIC) related to bio-economics; the proposal to create a KIC on marine resources, multilateral cooperation including the G3 (Ifremer, NOCS and Gâmar), etc.

A STRONG INTERNATIONAL POSITION

The world environment has been marked by rivalries emerging between the main centres of development, in a context where economies are energy-dependent. In terms of marine resources exploration and exploitation, these stakes will lead to major strategic consequences, with territorialisation of maritime areas which were previously freely accessible. With its overseas areas, France enjoys the second largest maritime area in the world, a fundamental asset in terms of ocean research. In order to maintain and strengthen its scientific excellence and its competitiveness, Ifremer must set its efforts and endeavours in an international dimension.

PARTICIPATION IN MAJOR INTERNATIONAL SCIENTIFIC PROGRAMMES

By their very nature, some research activities (oceanography and climate, geosciences, fisheries) are conducted in the framework of international programmes, in which Ifremer participates on a selective basis, by acting as secretary general, through scientific partnerships or by work done to support development. Scientific collaboration should also be developed in Overseas France with Australia or Brazil.

Financing these international cooperation programmes can be supported by the European Commission in the framework of Horizon 2020, or by the ANR which is developing its activities abroad through calls for joint proposals with its foreign counterparts (Japan, Taiwan, Brazil, etc.).

The Institute aims to be in the lead in certain disciplines, like observation and deep-sea resource exploration techniques, or mastery of databases, which means establishing targeted strategic partnerships and taking an active part in large international scientific programmes with high added value. Ifremer will pursue its cooperation efforts with industrial and emerging countries, while consolidating its position in the Mediterranean area.

COOPERATION WITH COUNTRIES IN THE MEDITERRANEAN ZONE, A PRIORITY FOR EUROPE

The political and economic specificities of the countries on the shores of the Mediterranean, their relative vulnerability with respect to environmental stakes, their involvement and organisation regarding scientific issues lead the Institute to build its collaborative work with respect to its theme-based and geographical priorities, as in the international Mistral programme studying how marine ecosystems respond to human activities and climate change.
AN INTEGRATED RESEARCH STRATEGY

As an integrated marine science institute, Ifremer produces scientific knowledge and know-how which have economic and social value, thus supporting sustainable use of marine ecosystem goods and services in the context of global change. An integrated research strategy built around strong objectives

"Assessing itself by excellence in research through a balanced partnership with universities and research bodies"

On the national, level, Ifremer has engaged partnerships both with universities and research bodies (CNRS, IRD and others) and with socio-economic stakeholders in the maritime realm. The Institute is heavily involved in LabEx Mar, and will pursue this dynamic growth by supporting the LabEx’s policy for enhanced international reach, in order to grow its own visibility and attractiveness. Additionally, it will engage partnerships with French scientific institutions and universities involved in the scientific fabric and secondly by ensuring it benefits from progress achieved in more upstream scientific research in thematic laboratories. To do so, the Institute must give preference to missions for expert assessments which are in keeping with the economic model and directly linked to its objectives of sustainable use of marine resources.

"Contributing to public policies with high added scientific value"

Ifremer is aiming to refocus on its activities with high added scientific value by transferring tried-and-tested monitoring protocols and assignments to other stakeholders, notably in the private sector.

"Driving finalised and systematic research which is rooted in expert assessment and observation capacities"

Ifremer’s ambition is to drive finalised research, firstly by making it part of the local and regional scientific fabric and secondly by ensuring it benefits from progress achieved in more upstream research in thematic laboratories. To do so, the Institute must give preference to missions for expert assessments which are in keeping with its economic model and directly linked to its objectives of sustainable use of marine resources.

"Making public-private partnership a component of the Ifremer model"

One of Ifremer’s ambitions is to make its scientific research outcomes and technological developments utilisable and to disseminate them to socio-economic stakeholders. Lasting conditions for creating value must be brought together by reinforcing the Institute’s role with respect to its academic, research infrastructure (French oceanographic fleet large-scale research infrastructure) and international surroundings.

"Contributing to develop valuable uses of scientific assets and the socio-economic development of Overseas France"

Seeing the potential that the regions and territories of Overseas France hold in terms of research, Ifremer has set itself the goal of pursuing its activities aiming at sustainable fisheries and aquaculture confronted with global change.

Thus the Institute’s priorities are to:

- strengthen research and draw greater benefit from the scientific added value brought by overseas environments, particularly in the fields of environment and biodiversity;
- develop scientific cooperation with neighbouring countries in the area and thus contribute to the integration of French ROM-CDM overseas regions and local authorities in their regional and international surroundings;
- promote, within alliances and especially AllEnvi, structuring partnerships with French scientific institutions and universities involved in Overseas France areas.

"Evaluating and readjusted scientific orientations"

Ifremer has updated and structured its strategic vision for 2020, into nine orientations which were defined in connection to national and European strategic priorities, whilst highlighting the importance of cross-cutting concepts (transfers, biodiversity, the structuring role of habitats). The institute accompanied this approach with a study of best practices in organisations in France’s three large European partner countries in terms of marine research (the United Kingdom, Germany and Italy).

1. Learn about ocean dynamics to supplement the scientific knowledge and anticipate changes in the coastal domain
2. Characterise marine biodiversity to better protect it
3. Develop enhanced value and use of biological resources through biotechnologies and bioprospection
4. Support pathways for sustainable development of fisheries and aquaculture confronted with global change
5. Explore the seafloor and identify the conditions for exploiting mineral and energy resources
6. Understand how ecosystems function and develop tools to serve the good environmental status of coastal seas

On one hand, Ifremer wants to refocus its activities on its core business, generating added value in scientific, economic and democratic terms, whilst further specifying its role with respect to its academic, public-sector or economic partners. On the other, in a difficult economic context combined with growing pressure on raw materials and other marine-based resources, Ifremer wants to guarantee a systemic approach aiming at sustainable fisheries and aquaculture (orientation 1), exploration of seafloors and the conditions under which mineral and energy resources are exploited (orientation 5).
Climate change is at the fore of concerns for public opinion and policy makers. The prospective foresight study conducted by the CNRS-INSU’s Ocean Atmosphere community, in the framework of defining strategies of adaptation to climate change, established that society expects that research should be clearly focused on decadal forecasts (30 years) on the regional scale for the ocean-atmosphere system.

The economic stakes related to assessing the impact of climate change on coastal regions at small spatial scales, associated with strong human pressures, will undergo significant developments in coming years, entailing the need to set up local models which are capable of estimating variations in coastal marine environmental components.

Some activities, such as exploiting renewable energy sources, create new requirements for knowledge, as does the phenomenon of population concentration on coasts. Coastal regions are also those most vulnerable to global change, involving numerous issues ranging from water management to the fate of contaminants.

The outcome of the Prévimer project, which supplies observations and real-time forecasts to the broadest possible public, will also set the direction for the future of coastal oceanography. These tools for observation and modelling developed by Ifremer provide structure for activities of research, expert assessment and monitoring of the coastal zones.

Recent events (cyclone Xynthia, green tides in Brittany, pollution in the Gulf of Mexico, contamination by Fukushima, and so on) have borne out the relevance of actions engaged by Ifremer in ocean analysis and forecasting, from offshore to inshore, as well as in managing and predicting risks related to physical, biological or biochemical environments alike.

The three major challenges (Ifremer has defined in this field thus remain highly topical: the Institute’s participation in the international effort to diagnosis climate change and understand the mechanisms underpinning it, the high-resolution ocean and finally, inshore and offshore ocean exchanges).

The knowledge and tools produced by this research will be used in regional climate modelling and operational oceanography.

Observing and quantifying the climate changes underway in oceans’ physical, chemical, and biological components. Specifying the ocean’s role in the Earth’s climate

LEARN ABOUT OCEAN DYNAMICS TO SUPPLEMENT THE DIAGNOSIS OF GLOBAL CHANGE AND ANTICIPATE CHANGES IN THE COASTAL DOMAIN

CONTEXT AND STAKES

OBJECTIVES AND STRATEGY

“Rising to the scientific challenge of decadal forecasting by improving knowledge about the mechanisms of variability”

The possibility of decadal forecasting of the climate system relies on data acquisition and analysis and modelling. Through its involvement in many partnerships, Ifremer contributes to observing ocean-climate variability on the global scale (ARGO) and in the North and South Atlantic (Orfeo, Sarmoc). Its research particularly focuses on thermohaline circulation and on the MOC (its meridional overturning circulation cell), which are relevant indicators of climate change.

“Better appraising ocean dynamics and scale interactions”

Satellite observation of the oceans and very high-resolution ocean modelling have revealed small-scale, very high-energy phenomena at the sea surface which have an influence on the global matter and heat budgets in the ocean.
Ifremer is associated in work done by LabEx Mer on ways to improve climate and ocean forecasting models based on studying the interactions between the various scales and understanding the mechanisms of anthropogenic carbon uptake in the ocean.

The Institute is also actively involved in the inter-organisation body called Coriolis (in situ oceanographic data centre), in order to organise and optimise France’s long-term contributions to the Global Ocean Observation System (GOOS) needed for operational oceanography and climate research.

“Preparing the evolution of the international ARGO array while maintaining Ifremer’s commitments in French and European contributions”

Coupling of biogeochemical cycles with the physical ocean is clearly recognised as a major research theme. The success of the Equipex NAOS project will make it possible to extend physical measuring capabilities beyond depths of 2,000 metres and give access to measurements of biogeochemical parameters from sensors installed on the new-generation ARGO profiling floats.

“Improving understanding of exchanges between the ocean and the atmosphere”

As a leader in observation and quantitative analysis of small spatial scales, thanks to its partnerships with CNES, ESA and NASA, as well as with JAMSTEC, which ensures access to the Earth Simulator supercomputer, Ifremer organises its studies by implementing synergy between the interpretation of very high-resolution satellite observations, instrumentation developments, analysis of in situ measurements and modelling of ocean-atmosphere interactions.

New Earth observation missions have been scheduled, such as SMOS (surface salinity), SWOT (very high-resolution ocean topography) and CFOSAT (ocean surface wind and waves), as well as missions operated in the framework of the European GMES programme with the ESA’s “Sentinel” satellites.

“Ensuring long-term and reinforced monitoring facilities in the coastal zone”

Coastal oceanography aims to improve the existing in situ observation and measurement systems, to consolidate Ovide’s status as environmental research observation (ORE) and to extend the Coriolis project to the coastal domain.

“Developing metrics to assess quality of simulations adapted to coastal environments”

Ifremer’s scientific committee recommends that a network of instrumentation be set up in the plumes of the four large rivers of metropolitan France to measure transport of nutrients and characterise the food chain (Fronce project).

“The European Copernicus (GMES) programme aims to develop operational services to make information related to environmental and safety management available.”

“Constructing coupling tools to enable a move to smaller scales between different models”
The issue of maintaining all biodiversity and exploiting it sustainably is a priority worldwide. Updating of strategies in this field on international, European and French scales is a major challenge for Ifremer.

In France, the Institute is directly associated with implementing the national strategy to create and manage marine protected areas, which was revised in 2011, the national biodiversity strategy (SNB) and the territorial strategy for Overseas France (Stratdefs). Ifremer’s participation in the Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES) set up by the United Nations in 2011 improves the rate of representation of French scientific expertise in international bodies. This issue is even more cogent on the European level with FR7 initiatives such as the Biodiversity (Cesab). Finally, the Ecoscope platform approved by AllEnvi as a long-term system of observation and experimentation for environmental research (Soere) in 2011, is taking part in coordinating biodiversity research observatories.

The cross-cutting nature of biodiversity requires that the major research players work in coordination. For example, the joint research unit UMR Amura, created by Ifremer and the Centre for marine law and economics at the University of western Brittany (UBO), leads the thought and discussion process on assessing ecosystem services and biodiversity economics. The UMR unit will play a leading role in mobilising and developing a research community in Europe.

Ifremer must also rise to the challenge of putting EU framework directives objectives to recover good environmental status (GES) into application, especially that of the Marine Strategy Framework Directive (MSFD).

On the national level, research has evolved towards greater structuring through the creation of AllEnvi and that of the French foundation for research on biodiversity (FRRB), itself at the origin of the Centre for synthesis and analysis on biodiversity (Cesab). Finally, the Ecoscope platform approved by AllEnvi as a long-term system of observation and experimentation for environmental research (Soere) in 2011, is taking part in coordinating biodiversity research observatories.

Ifremer’s priority is to lead the reflection about assessment of ecosystem services and the economics of biodiversity, and to develop research projects aiming to define and apply conceptual and methodological frameworks. These approaches will lead to drawing up scenarios of how biodiversity could evolve, contributing to the running of the IPBES scientific platform.
DEVELOP ENHANCED VALUE AND USE OF BIOLOGICAL RESOURCES THROUGH BIOTECHNOLOGIES AND BIOPROSPECTION

CONTEXT AND STAKES

Only a tiny fraction of the micro-organisms living in extreme ecosystems has been inventoried and an even smaller fraction of these can be cultured (less than 1%). These unknown and untapped marine biological resources may well be the main reservoir of new high added value molecules in coming decades.

Less than 50% of commercially-used marine species are directly utilised by humans, the rest is often considered as waste or by-products and should be valorised. Trends in European regulations require that appropriate solutions targeting zero-discharge be sought.

A European foresight study published by the European Science Foundation in 2010 indicated that blue biotechnologies will make a significant contribution in responding to major societal stakes on the 2020 horizon.

Creating value from biotechnologies: responding to five major concerns

- Scarcity and higher prices of raw materials and fossil energy sources. Marine plant biomasses produced by photosynthesis could be a solution to produce energy or raw materials for industry (fine chemicals, pharmaceuticals).
- Dwindling marine food resources.
- Reducing energy consumption and greenhouse-gas emissions. Microalgae can help trap CO₂ and enzymes, including those from ocean hydrothermal vents, can supply catalytic biosynthesis solutions as alternatives to chemical processes currently used.
- Environmental compliance by treating pollution from farming, sea or industry.
- Changing legislation on chemical products (European REACH directive). This awareness has led to the will of industrial firms to propose, by 2030, between 20 and 30% of products from natural sources. This means that in the next few decades, the percentage of biodegradable polymers produced by biotechnologies could reach from 15 to 20% of the world market for polymers from petrochemical production.

Collecting, isolating, and characterising marine microorganisms.

Improving value enhancement of the entire exploited marine biomass, particularly by-products. Controlling its production or supply for the characterisation of biomolecules of industrial interest in the fields of food, health, environment and energy.
OBJECTIVES AND STRATEGY

The principal goals identified by the coordination of three European networks (Marine Genomics Europe, MarBef and EurOceans) and by the 2010 European foresight study concern bioprospection for novel microorganisms and exploiting biodiversity by developing culturing techniques and valorising biological and renewable energy resources.

To rise to these challenges, Ifremer has extensive means to explore marine environments, as well as know-how in controlled culturing and bioconversion of marine resources.

Coordination of various disciplines (ecophysiology, biochemistry, molecular biology, bioinformatics, taxonomy, and so on) which are indissociable from a systemic approach in biotech research will also have to be set up.

In order to reinforce and develop these various fields of excellence, Ifremer has drawn up its strategic priorities.

“Step up research on various aspects of genomics (metagenomics, proteomics, metabolomics)”

Developing genomics tools to identify genetic resources and to inventory species, along with setting up national and regional technical platforms, considerably speeds up the acquisition of the knowledge base needed for biotechnology.

“Develop strain collections in the framework of European biological resource centres”

Collecting microorganisms relies on setting up a procedure for their systematic collection during cruises, ensuring they are consistent with means and means (fishing gear, grounds, etc.).

“Pool Ifremer’s strengths in the field of marine bacteria”

Research on related molecules (thermostable enzymes, metabolites and biopolymers) will be ramped up for applications in the fields of health and environment.

“Develop, improve and transfer conversion bioprocesses which can optimise sustainable use of resources”

This involves, in partnership with INRA, implementing modern tools for identification, screening, conversion and analysis of molecular biosynthesis based on the species studied.

“Pursue and broaden research for exploiting and deriving value from novel molecules from species endemic to New Caledonia”

“Develop biosensors to monitor coastal systems”

This objective corresponds to a strong European orientation (The Ocean of tomorrow programme) and involves developing biosensors to check contaminant and toxin levels in the marine environment (working with the CEA).

“Maintain and strengthen collaborative work with French and European institutes and universities, as well as with industrial firms for R&D”
SUPPORT PATHWAYS FOR SUSTAINABLE DEVELOPMENT OF FISHERIES AND AQUACULTURE CONFRONTED BY GLOBAL CHANGE

CONTEXT AND STAKES

Evaluated every ten years, the Common Fisheries Policy (CFP) has been reformed with the priority of bringing fisheries stocks exploitation back to and keeping it at levels enabling maximum sustainable yield to be achieved by 2015. One of the new CFP’s ambitions is to become consistent with the Marine Strategy Framework Directive (MSFD).

The European strategy for sustainable development of aquaculture also supports these guidelines, with European Union funding being allocated to R&D projects and the development of Marine Spatial plans for uses of maritime areas which incorporate the strategic importance of aquaculture.

In the fisheries assessment field, Ifremer’s capabilities will be confronted with expectations raised by the renewal of European environmental and fisheries policies. These regulatory changes will lead to the ramping up of modelling related to assessment and management procedures, as well as the implementation of reliable tools and rules for decision-making which can be used with smaller amounts of data.

Drawing up scenarios for the development of fisheries and aquaculture is also highly dependent on knowledge and on anticipating the effects of global change on marine ecosystems.

Since 2008, the French oyster-farming value chain has been hit by sudden and massive mortality events affecting Pacific cupped oyster spat. Putting a protection plan into practice is subject to understanding resistance mechanisms in spat, in the framework of partnership-based research led by Ifremer.

Being linked to food creation, creating wealth and maintaining jobs, the research stakes here are both socio-economic and environmental in nature. Therefore, the prime objective, in the framework of a systemic approach, is to identify the determining factors of development pathways in fisheries and aquaculture (global change, market mechanisms, etc.) and elucidate the combined effects of the numerous, multi-scalar phenomena which alter these pathways.

In the fisheries assessment field, Ifremer’s capabilities will be confronted with expectations raised by the renewal of European environmental and fisheries policies. These regulatory changes will lead to the ramping up of modelling related to assessment and management procedures, as well as the implementation of reliable tools and rules for decision-making which can be used with smaller amounts of data.

Drawing up scenarios for the development of fisheries and aquaculture is also highly dependent on knowledge and on anticipating the effects of global change on marine ecosystems.

Since 2008, the French oyster-farming value chain has been hit by sudden and massive mortality events affecting Pacific cupped oyster spat. Putting a protection plan into practice is subject to understanding resistance mechanisms in spat, in the framework of partnership-based research led by Ifremer.

Being linked to food creation, creating wealth and maintaining jobs, the research stakes here are both socio-economic and environmental in nature. Therefore, the prime objective, in the framework of a systemic approach, is to identify the determining factors of development pathways in fisheries and aquaculture (global change, market mechanisms, etc.) and elucidate the combined effects of the numerous, multi-scalar phenomena which alter these pathways.

OBJECTIVES AND STRATEGY

In view of the regulations and reforms underway, it seems necessary to reinforce some research and expert assessment priorities and define new strategies within an appropriate partnership-based framework. Due to the interactions and socio-economic context, working more closely with the professional sector will be further increased in the framework of jointly-operated projects. Ifremer is also pursuing its commitment to research and support for aquaculture development in Overseas France.

In the medium term, genetic research will seek to understand the processes of species adaptation to global change.

GENETICS AND AQUACULTURE

The short-term priority is to understand the mechanisms of artificial mortality epidemics affecting Pacific cupped oysters (C. gigas) so that measures can be put into place to prevent outbreaks, raise alerts and combat these pathogenic organisms. They comprise identifying and characterising the virulence of pathogenic organisms, elucidating host-environment-pathogens interactions and modelling the outbreaks and persistence of pathogens.

Outcomes will be applied to rebuild sources of larvae by genetic introgression. The approach will be grounded on modeling of the environmental dynamics in pearl farming areas. In French Polynesia, genetic selection will concern characteristics of nacre quality in pearl oysters.

In the fisheries assessment field, Ifremer’s capabilities will be confronted with expectations raised by the renewal of European environmental and fisheries policies. These regulatory changes will lead to the ramping up of modelling related to assessment and management procedures, as well as the implementation of reliable tools and rules for decision-making which can be used with smaller amounts of data.

Drawing up scenarios for the development of fisheries and aquaculture is also highly dependent on knowledge and on anticipating the effects of global change on marine ecosystems.

Since 2008, the French oyster-farming value chain has been hit by sudden and massive mortality events affecting Pacific cupped oyster spat. Putting a protection plan into practice is subject to understanding resistance mechanisms in spat, in the framework of partnership-based research led by Ifremer.

Being linked to food creation, creating wealth and maintaining jobs, the research stakes here are both socio-economic and environmental in nature. Therefore, the prime objective, in the framework of a systemic approach, is to identify the determining factors of development pathways in fisheries and aquaculture (global change, market mechanisms, etc.) and elucidate the combined effects of the numerous, multi-scalar phenomena which alter these pathways.

In the medium term, genetic research will seek to understand the processes of species adaptation to global change.

GENETICS AND AQUACULTURE

The short-term priority is to understand the mechanisms of artificial mortality epidemics affecting Pacific cupped oysters (C. gigas) so that measures can be put into place to prevent outbreaks, raise alerts and combat these pathogenic organisms. They comprise identifying and characterising the virulence of pathogenic organisms, elucidating host-environment-pathogens interactions and modelling the outbreaks and persistence of pathogens.

Outcomes will be applied to rebuild sources of larvae by genetic introgression. The approach will be grounded on modeling of the environmental dynamics in pearl farming areas. In French Polynesia, genetic selection will concern characteristics of nacre quality in pearl oysters.

In the fisheries assessment field, Ifremer’s capabilities will be confronted with expectations raised by the renewal of European environmental and fisheries policies. These regulatory changes will lead to the ramping up of modelling related to assessment and management procedures, as well as the implementation of reliable tools and rules for decision-making which can be used with smaller amounts of data.

Drawing up scenarios for the development of fisheries and aquaculture is also highly dependent on knowledge and on anticipating the effects of global change on marine ecosystems.

Since 2008, the French oyster-farming value chain has been hit by sudden and massive mortality events affecting Pacific cupped oyster spat. Putting a protection plan into practice is subject to understanding resistance mechanisms in spat, in the framework of partnership-based research led by Ifremer.

Being linked to food creation, creating wealth and maintaining jobs, the research stakes here are both socio-economic and environmental in nature. Therefore, the prime objective, in the framework of a systemic approach, is to identify the determining factors of development pathways in fisheries and aquaculture (global change, market mechanisms, etc.) and elucidate the combined effects of the numerous, multi-scalar phenomena which alter these pathways.

In the medium term, genetic research will seek to understand the processes of species adaptation to global change.
EXPLORE THE SEAFLOORS AND IDENTIFY, BY ECOSYSTEMIC APPROACH AND IN A CONTEXT OF SUSTAINABLE DEVELOPMENT, THE CONDITIONS FOR EXPLOITING MINERAL AND ENERGY RESOURCES

CONTEXT AND STAKES

The scientific stakes related to marine mineral and energy resources are mainly focused on knowledge about deep seafloors and the processes of formation of these deposits, on the environmental impact of mining or exploiting them, on understanding the climate, on natural and induced risks and hazards of seabed instability and on developing efficient exploration and production systems.

Prospecting and exploiting “extreme oil” at increasing depths already represent 30% of current production. This research will grow even more thanks to new knowledge about margin structures and sedimentary processes.

The Cimar interministerial committee for the sea meeting on 2 December 2013 highlighted the need for renewed explorations, against a backdrop of renewed exploration in international waters. Ifremer’s support, for hydrothermal sulphide exploration in international waters.

The Cimar interministerial committee for the sea meeting on 2 December 2013 highlighted France’s will to promote the exploitation of deep seafloors. Ifremer is one of these actors of the national strategy in the field, whose foundations are based on close cooperation between research and industry, in order to position research in the dynamic science and technology, essential fields: environmental knowledge and natural hazards related to gas hydrates. The processes of metalliferous deposit formation were formed, as well as analysing natural and environmental risks and hazards. This research depends on developing technologies for multi-scalar exploration and seafloor observation (EMSDO large-scale RO, Eric EMSO).

The Carnot-Ifremer Extros institute (for exploitation and sustainable utilisation of mineral and energy resources from the ocean) secured new labelling approval for the period from 2011-2015.

Objectives and Strategy

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer benefits from extensive scientific expertise in this field and its research studies are built upon a systemic approach applied to the economic, geopolitical and legal context. This includes understanding the mechanisms by which resources and related ecosystem services were formed, as well as analysing natural and environmental risks and hazards. This research depends on developing technologies for multi-scalar exploration and seafloor observation (EMSDO large-scale RO, Eric EMSO).

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.

Ifremer’s studies will contribute to building a knowledge base on the dynamics of interactions between fluids, lithosphere, hydrosphere and biosphere, taking systematic or even long-term observations as a basis, and thus to appraising variability over time and space.

One of LabEx Mer’s orientations involves geo-biological interactions in extreme environments, whilst another line of research focuses on transfers of matter between land and ocean, from coastal areas to the abyssal plains.

On questions of sedimentary basins and deep offshore oil, studies are aiming to develop conceptual models of how margins were constructed and modeling of sedimentary deposits and natural hazards related to gas hydrates.
France has defined a national strategy for the sea and coasts which is in phase both with European policies and with the conventions for regional seas (Ospar). Its implementation requires new knowledge with a strong operational component directed at collecting data, informing the indicators (state of ecosystems, resources, changes and developments) and drawing up effective management measures. Ifremer’s contribution is awaited to enable an ambitious monitoring programme, imposed by the MSFD on the scale of marine subregions, to be set up as of 2014. This directive raises numerous questions and presupposes that environmental status objectives be defined and that tools, assessment methods and measures to control anthropogenic pressures be developed. It also gives rise to European programmes that Ifremer will take part in.

These public policies are based on a monitoring system which can ensure progression towards good status of the marine environment and enable managers of maritime areas to be informed. Designing, implementing and updating this system involves a comprehensive approach (physics, biogeochemistry, benthic and pelagic ecology) in order to better understand the dynamics of marine ecosystems, along with the effect of natural and anthropogenic forcings.

The national 2012–2020 strategy for research infrastructures promotes the networking of long-term observation and experimentation systems (Soere) and the developing of databases in European and international frameworks (GMES, Geoss). AllEnvi leads to structuring of institutional approaches and facilitating the sharing of means. Other bodies also promote this work to coordinate observation, like the INSU special commissions (“Ocean, atmosphere and climate” and “Continental surfaces and interfaces”).

In general, marine research will have to respond to new, emerging research themes related to the European Union’s will to achieve and preserve the good status of marine ecosystems and resources. Nevertheless, it will be necessary to strengthen the links between research, monitoring and expert assessment activities, giving priority to actions with high added value: integrated expertise, drawing up of methods and indicators, defining standards, databasing and data interpretation.

Ifremer is also participating in developing coastal operational oceanography tools and related services geared towards research and towards the social and economic sphere (forecasts, alerts, crisis management, embedding small-scale models, drafting scenarios for trends and so on).

The pursuance of these studies and goals relies on implementing the following actions:

- Consolidating theme-based clusters and reference laboratories combining research, expert assessment and monitoring support activities. Adapting and optimizing the strategy for quality and laboratory accreditation;
- Ramping up efforts on observatories to serve research issues and to meet societal expectations (in relation with AllEnvi);
- Favouring a stance of assisting the contracting authority in the national monitoring system and continuing to transfer tasks with lower scientific added value to other stakeholders.
- Developing numerical modelling of the coastal sea and coupling physics with biogeochemical and biological models by adding metrics which can be used to characterize the uncertainties and the validity of model outputs;
- Contributing to setting up integrated “digital monitoring” combining field data, high frequency in situ instrumentation, satellite data and numerical modelling. Integrating new tools and technologies will make it possible to upgrade the configuration of existing networks and to optimise field work.
To successfully fulfil its missions for research and support to public policy makers and socio-economic players in the maritime realm, Ifremer has acquired sound expertise in the field of databasing and management of marine data. The quality of the services operated has made the Institute a globally recognised player. The quality of the services operated has made the Institute a globally recognised player.

In Europe, Ifremer coordinates the SeaDataNet digital research infrastructure, hosts one of two ARGO centres worldwide (automating marine observation) and manages databases in five major fields: ocean physics, geosciences, coastal environment, fisheries and biodiversity. Databasing is facing contextual changes and developments which raise many challenges for Ifremer, with general trends linked to progress made in molecular biology. This has resulted in a wide range of highly diverse data to be harmonised and managed.

The most integrated scientific approaches require creating large sets of consistent data of proven quality, sufficiently processed for direct use by multidisciplinary teams.

Recent regulatory developments of the MSFD and the Common Fisheries Policy have generated a rising need for data acquisition or indicator definitions, at a time when the European marine environmental data network Emerodat has expressed the will to harmonise data flows and exchanges with the European Commission.

By nature, environmental data should be widely disseminated. In this respect, the European Inspire Directive sets out obligations for data description and availability. In France, this policy to open up access has led to the creation of institutional distributed systems, like that of the water information system (SIeau) or the national sea and coast observatory (ONML).

The growing fluxes of digitized data, greater volumes of data to be archived, the multiplication of data acquisition in the form of images imply that higher performance IT resources and more automated data management procedures are required, meaning that this field of work must evolve towards new practices and skill sets.

Objectives and strategy

Marine databases are strategic infrastructures, just like large-scale facilities and supercomputing resources. Ifremer must consolidate its position in this field in order to contribute to the excellence of French marine research and to position in this field in order to contribute to the excellence of French marine research and to。

First and foremost, for Ifremer this means building services based on availability, continuity, quality and commitment, while focusing its efforts on its high-priority discipline fields.

The Institute is also working to develop tools to facilitate access to data and information stored and promoting the valuable utilisation of data in publications and scientific studies.

In technical terms, the objective is to continue the transition, already well underway, towards "open" standards, which will facilitate the interconnection of data systems and enable a given basic datum to be used under various forms and via various portals.

Technically speaking, the objective is to ensure that all marine data be converged towards a single point of access (portal) and to develop more didactic products to visualise them (maps, indicators, etc.) that are adapted to contractual requirements.

This strategy will be refined, working with AllEnvi partners. It will especially consist in clarifying the linkage between the scope of marine databases and Soere-labelled systems for observation and experimentation.

"To strengthen national coordination of marine databases, as in major European projects SeaDataNet, MyOcean, etc."
The French oceanographic fleet is one of the most integrated fleets in the world. It is characterised by its multi-purpose functioning, made possible by its current scope, with vessels and underwater vehicles which are complementary in terms of size and functions. It is solicited for activities of scientific research, cooperation between research and industry and chartering, as well as for public service missions, with priority given to access for research cruises and scientific observations.

The sea-going oceanographic research facilities of Ifremer, CNRS, IFREMER and IRD have been grouped together in the French Oceanographic Fleet large research infrastructure called TSIF FDF since 2008. In March 2011, a significant step in its governance was made with the creation of the joint service unit called UMS FOF. The unit in charge of coordinated management of the ocean research fleet, Integrated scheduling, fleet development plan and investment policies.

Concurrently, the main research stakes which are decisive for fleet use were clarified.

Within the Fleet large-scale Research Infrastructure, Ifremer is owner via the Genavir currently being redefined in order to access for research cruises and scientific observations.

Although the decision to create the UMS French fleet joint service unit is an important one, it has come at a time of severe budgetary constraints, chronic under-financing of fleet operation and use of RV Thalassa - are in crisis or have disappeared due to lack of financing. The third partnership, set up with the French Navy for the construction and use of RVs Pourquoi pas ? and Beaufort (Beaufort), is continuing, with increasingly tight financial constraints.

The absence of a legal structure for the UMS Fleet joint service unit prevents it from signing agreements with other operators. Thus opening the Fleet large-scale RI to national and European institutions relies almost exclusively on agreements or partnerships which were entered into by Ifremer more than fifteen years ago.

Finally, indicative of the far-ranging changes underway, two structuring institutional partnerships were developed within OFEG and with the Spanish oceanographic institute (IEO) - for the building and use of RV Thalassa - are in crisis or have disappeared due to lack of financing. The third partnership, set up with the French Navy for the construction and use of RVs Pourquoi pas ? and Beaufort (Beaufort), is continuing, with increasingly tight financial constraints.

The French oceanographic fleet is one of the most integrated fleets in the world. It is characterised by its multi-purpose functioning, made possible by its current scope, with vessels and underwater vehicles which are complementary in terms of size and functions. It is solicited for activities of scientific research, cooperation between research and industry and chartering, as well as for public service missions, with priority given to access for research cruises and scientific observations.

The sea-going oceanographic research facilities of Ifremer, CNRS, IFREMER and IRD have been grouped together in the French Oceanographic Fleet large research infrastructure called TSIF FDF since 2008. In March 2011, a significant step in its governance was made with the creation of the joint service unit called UMS FOF. The unit in charge of coordinated management of the ocean research fleet, Integrated scheduling, fleet development plan and investment policies.

Concurrently, the main research stakes which are decisive for fleet use were clarified.

Within the Fleet large-scale Research Infrastructure, Ifremer is owner via the Genavir currently being redefined in order to access for research cruises and scientific observations.

Although the decision to create the UMS French fleet joint service unit is an important one, it has come at a time of severe budgetary constraints, chronic under-financing of fleet operation and the urgent need to renew part of its vessels and large equipment. Therefore, a scenario for a renewal plan was submitted by the institutions which operate the Fleet large-scale research infrastructure to MESR in July 2012. It aims to keep investments to a reasonable level whilst conveying a national ambition kept intact in terms of fleet capacity and performance. Ifremer will defend this scenario, as it guarantees the multi-purpose nature of the fleet that will ensure overall savings for the French State and confirms the importance of technological innovation required for research excellence.

Finally, indicative of the far-ranging changes underway, two structuring institutional partnerships were developed within OFEG and with the Spanish oceanographic institute (IEO) - for the building and use of RV Thalassa - are in crisis or have disappeared due to lack of financing. The third partnership, set up with the French Navy for the construction and use of RVs Pourquoi pas ? and Beaufort (Beaufort), is continuing, with increasingly tight financial constraints.

The main strengths of Ifremer lie in the professionalism of its operations coordination teams, its engineering and its technological development capability, whether for integrating or developing its vessels and underwater systems or equipment or making them operational. The system is complemented by the relationship with Navar currentlly being redefined in order to clarify rules and control costs – and the quality assurance approach.

The Fleet large-scale research infrastructure will be built by making optimal use of its members’ strengths, while constantly seeking achievements, whether for integrating or developing its vessels and underwater systems or equipment or making them operational. The system is complemented by the relationship with Navar currentlly being redefined in order to clarify rules and control costs – and the quality assurance approach.

**CONTEXT AND STAKES**

The French oceanographic fleet is one of the most integrated fleets in the world. It is characterised by its multi-purpose functioning, made possible by its current scope, with vessels and underwater vehicles which are complementary in terms of size and functions. It is solicited for activities of scientific research, cooperation between research and industry and chartering, as well as for public service missions, with priority given to access for research cruises and scientific observations.

The sea-going oceanographic research facilities of Ifremer, CNRS, IFREMER and IRD have been grouped together in the French Oceanographic Fleet large research infrastructure called TSIF FDF since 2008. In March 2011, a significant step in its governance was made with the creation of the joint service unit called UMS FOF. The unit in charge of coordinated management of the ocean research fleet, Integrated scheduling, fleet development plan and investment policies.

Concurrently, the main research stakes which are decisive for fleet use were clarified.

Within the Fleet large-scale Research Infrastructure, Ifremer is owner via the Genavir currently being redefined in order to access for research cruises and scientific observations.

Although the decision to create the UMS French fleet joint service unit is an important one, it has come at a time of severe budgetary constraints, chronic under-financing of fleet operation and the urgent need to renew part of its vessels and large equipment. Therefore, a scenario for a renewal plan was submitted by the institutions which operate the Fleet large-scale research infrastructure to MESR in July 2012. It aims to keep investments to a reasonable level whilst conveying a national ambition kept intact in terms of fleet capacity and performance. Ifremer will defend this scenario, as it guarantees the multi-purpose nature of the fleet that will ensure overall savings for the French State and confirms the importance of technological innovation required for research excellence.

Finally, indicative of the far-ranging changes underway, two structuring institutional partnerships were developed within OFEG and with the Spanish oceanographic institute (IEO) - for the building and use of RV Thalassa - are in crisis or have disappeared due to lack of financing. The third partnership, set up with the French Navy for the construction and use of RVs Pourquoi pas ? and Beaufort (Beaufort), is continuing, with increasingly tight financial constraints.

The main strengths of Ifremer lie in the professionalism of its operations coordination teams, its engineering and its technological development capability, whether for integrating or developing its vessels and underwater systems or equipment or making them operational. The system is complemented by the relationship with Navar currentlly being redefined in order to clarify rules and control costs – and the quality assurance approach.

The Fleet large-scale research infrastructure will be built by making optimal use of its members’ strengths, while constantly seeking achievements, whether for integrating or developing its vessels and underwater systems or equipment or making them operational. The system is complemented by the relationship with Navar currentlly being redefined in order to clarify rules and control costs – and the quality assurance approach.

**OBJECTIVES AND STRATEGY**

The importance of an economic model in common with the large research infrastructure

An economic model must be reinvented to allow balanced programming of its activities and reduce cruise scheduling time. Seeing how funding of scientific-cruise projects is progressing both nationally (with the ANR) and on the European level, this approach should be based on aligning the fleet’s financing.

The Fleet large-scale research infrastructure will be built by making optimal use of its members’ strengths, while constantly seeking achievements, whether for integrating or developing its vessels and underwater systems or equipment or making them operational. The system is complemented by the relationship with Navar currentlly being redefined in order to clarify rules and control costs – and the quality assurance approach.

**“Maintain partnerships and pursue European integration of the fleet”**

The absence of a legal structure for the UMS Fleet joint service unit prevents it from signing agreements with other operators. Thus opening the Fleet large-scale RI to national and European institutions relies almost exclusively on agreements or partnerships which were entered into by Ifremer more than fifteen years ago.

Stronger ties should be sought with the French Navy, which is confronted with the need to renew its third second-class hydrographic survey vessels.

On the European level, Ifremer, coordinating two projects, Eurofleets1, then Eurofleets2 (2013-2017) and playing an important role within OFEG, will endeavour to reconcile these two approaches.
PROMOTE SHARED CAPACITY FOR TECHNOLOGICAL INNOVATION

CONTEXT AND STAKES
The updating of Ifremer’s strategic plan, in the field of research and technological innovation, takes new players and large-scale projects into account. These include the Carnot Ifremer-Edrôme Institute’s Captiven project (water and soil sensors for environmental quality data); EMSO-Esteth and Jerico (deep seafloor and coastal observatories); Eurofleets2 (standardised measurement tools and software for data acquisition, processing and databasing).

The Phoenix research grouping brings together French (CNRS and Ifremer) and German (AWI and Marum) institutes to perform studies in the field of underwater systems and related technologies (AUVs, HROVs and interoperability).

Lastly, the participation of keen citizens who care about their environment is increasingly solicited, to enrich and complement scientific assessment studies (“participatory science”).

OBJECTIVES AND STRATEGY
Research and technological innovation must meet new requirements related to observation, measuring and monitoring, with ever-higher performance in terms of accuracy, reliability, repeatability and sustainability as well as eco-design. This ambition is built upon well-defined objectives for Ifremer’s actions in this field:

- pursuing technological developments in the Carnot Ifremer-Edrôme Institute framework and helping support both France énergies marines and the world of industry by proposing technological expert assessments, site studies and impact measurements;
- contributing to keeping a high level of service in terms of underwater equipment, vehicles and systems, for the benefit of the scientific community;
- promoting and developing observatories around NAOS and the European Euro-ARGO (open seas), EMSO (deep sea) and Jerico (coastal) projects, as well as the different measurement systems (buoys, profiling floats, seabed stations, gliders, surface drones, etc.);
- developing tools for in situ surveying and analysis of mineral resource deposits and helping to characterise sinks and reservoirs;
- anticipating new tools for monitoring and surveillance incorporating high-frequency in situ measurements, operational oceanography techniques and numerical modelling.

Ifremer gathers complementary expertise in disciplines which are essential in marine science and engineering science, enabling it to progress in mastery of data chains, from sensor to databasing, and in drawing up time series, thus meeting major challenges of the coming decade.
Priorities are set with respect to three fields of research.

**R&D FOR SENSORS AND MEASUREMENT SYSTEM TECHNOLOGIES**

A major effort is expected in terms of coastal and deep-sea chemical, biological and biogeochemical measurements, including the integration of new transducers, miniaturisation of measurement systems and data recovery, associated with lowering of costs. Measuring anthropogenic noise using passive acoustics also represents a future challenge for the MSFD.

**COMPLEX SYSTEMS ENGINEERING**

Ifremer integrates technologies for vehicles, underwater systems and observatories. By coordinating these complex projects, the Institute has acquired expertise which is practically unique in Europe. So, research is aimed at optimising these networks by developing or improving tools for strategic prospection, studying ecosystem functioning and developing marine energies.

Observation systems are producing more and more data. To optimise analysis time, information technology tools adapted to each instrument must be developed and new computing technology capabilities assessed.

**TECHNOLOGY CONTRIBUTING TO LARGE RESEARCH INFRASTRUCTURES**

Ifremer is actively engaged in three large scale research infrastructures (FOF, Euro-Argo and EMSO) which are structuring orientations to be maintained, with the required service levels and quality, and which represent the following challenges to tackle:

- Improve the power capacity of at least one of the coastal AUVs to dive to greater depths;
- Commission HROV aboard inshore vessels;
- Optimize the offshore fleet’s tools by implementing new monitoring protocols and calibration methodologies;
- Increase the inshore fleet’s data acquisition capacity;
- Finalise the software to help perform and process cruise data (Eurofleets);
- Develop telepresence to reduce sea cruise costs;
- Upgrade the seismic equipment (Sisdav project);
- Develop new biochemical sensors and create profilers which can measure physical parameters to depths reaching 3,500 metres (Equipex NAOS project);
- Assess gliders’ contribution to the Argo network and to ocean modelling;
- Increase long-term holding of fixed-point deep seafloor observatories.
## Glossaire

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANR</td>
<td>Agence nationale de la recherche</td>
</tr>
<tr>
<td>AWI</td>
<td>Alfred Wegener Institut</td>
</tr>
<tr>
<td>CEA</td>
<td>Commissariat à l’énergie atomique et aux énergies alternatives</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre national d’études spatiales</td>
</tr>
<tr>
<td>CNRS</td>
<td>Centre national de la recherche scientifique</td>
</tr>
<tr>
<td>COM</td>
<td>French overseas local authorities</td>
</tr>
<tr>
<td>ESA</td>
<td>European State Agency</td>
</tr>
<tr>
<td>FP R&amp;D</td>
<td>Framework Programme Research &amp; Development</td>
</tr>
<tr>
<td>GEOSS</td>
<td>Global Earth Observation System of Systems</td>
</tr>
<tr>
<td>GMES</td>
<td>Global Monitoring for Environment and Security</td>
</tr>
<tr>
<td>GOOS</td>
<td>Global Ocean Observing System</td>
</tr>
<tr>
<td>ICES</td>
<td>International Council for the Exploration of the Sea</td>
</tr>
<tr>
<td>IEED</td>
<td>Institut d’excellence sur les énergies décarbonées</td>
</tr>
<tr>
<td>IFM Geomar</td>
<td>Institut für Meereswissenschaften an der Universität Kiel</td>
</tr>
<tr>
<td>INRA</td>
<td>Institut national de la recherche agronomique</td>
</tr>
<tr>
<td>INSU</td>
<td>Institut national des sciences de l’Univers</td>
</tr>
<tr>
<td>IPBES</td>
<td>Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services</td>
</tr>
<tr>
<td>IRD</td>
<td>Institut de recherche pour le développement</td>
</tr>
<tr>
<td>JPI Océans</td>
<td>Joint Programming Initiative Oceans</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>ROM</td>
<td>French overseas regions</td>
</tr>
<tr>
<td>SCOR-IOC Geohab</td>
<td>international research programme on the Global Ecology and Oceanography of Harmful Algal Blooms</td>
</tr>
<tr>
<td>TGIR</td>
<td>Fleet large-scale research infrastructure</td>
</tr>
</tbody>
</table>
CREDITS PHOTOS

Ifremer/Olivier Dugornay : p.0-3b-4-7-10-13-18-22-23-28-31
Ifremer/Olivier Dugornay-Emina Mamacà : p.24
Ifremer/Michel Gouillou : p.1-16-26d-27-29
Ifremer/Yannick Gueguen : p.0-3h-6
Ifremer/Stéphane Lesbats : p.8-25-26g
Ifremer/Jean Prou : p.19
Ifremer/Christelle Simon-Colin/Jean Guezenec : p.14
Ifremer/Sylvain Vandoolaeghe : p.5
Ifremer-LEMA NC / Liet Chim : p.15
Ifremer/Yves Gladu : p.0-30
Ifremer/Studioben : p.0-17
Genavir/Loïc Treluyer : p.11
Ifremer-AWI/Campagne ARK XIX : p.9
Ifremer-Nautil/Campagne Futuna : p.2-20
Ifremer-Victor/Campagne WACS : p.21